Language Selection

English French German Italian Portuguese Spanish

How-to Edit Grub

Filed under
HowTos
-s

So you've just installed your second, or third, or ninth Linux distribution and it either didn't recognize all your installs or you chose to skip that phase of the install. Of course you'd like to be able to boot all of these installs. Editing the grub.conf (or menu.lst) is an easy peasy procedure once you have an elementary understanding of the basic components.

If you are editing your Grub menu then we'll assume you already have it installed. This howto is to merely add an additional system to the existing file. This howto was inspired by this poor chap who resorted to reinstalling a whole system in order to update his Grub menu. No one should have to do that. Hopefully this will help.

Now I'm far from an expert, but having had to recently learn how to do this myself, I think I'll share what I do. The main advantage of using Grub is that editing the menu file is all that's necessary - as opposed to Lilo which requires one to rerun the Lilo program to reinstall it into the mbr.

The first thing I do is copy and paste an existing entry. No sense in retyping all of that and chances are you will probably want to use the same kernel parameters for the new install that you've used for previous. So:

  1. Copy and paste your favorite existing entry either where you think you'd like it or at the end of the list.

  2. Start the edit. The first thing one might need to consider is the title. This is easy, just change it to a meaningful name for your new install. In "Tryst's" case, he needed a new entry for PCLinuxOS 2007. So, he could have used PCLOS2007. Unlike Lilo, with Grub you can use names with spaces, so he could have used PCLOS 2007 if he chose.

  3. Now the bit more tricky part, the root. This is the component that specifies where the boot kernel is. Is it in a shared /boot partition or is it in the /boot directory of the new install?

    • First case scenario: Let's say you told the installer about your seperate /boot partition and it installed the boot kernel into it. The root component must then point to your shared /boot partition.

      The format might look scary at first, but it isn't. In the true Unix fashion, it begins its numbering with 0 (zero). The first number indicates the harddrive number. So, hda is 0, hdb is 1, hdc is 2, and so on. So, more than likely your boot partition is located on hda and in which case 0 is the number you want there. Just remember it's N - 1.

      The second number is the partition number. Again, hda1 is 0, hda2 is 1, and so on. So, say your /boot partition is located at sda5 you'd want to put a 4 there. So, your root entry might look like so:

      root (hd0,4)

    • Second scenario: You told the installer to install Grub onto the / (root) partition of the new install or you chose to skip installing Grub altogether. In this case the root component needs to point to the install partition. So, for example, say your new system is installed on hdb8, your root parameter should read:

      root (hd1,7)

  4. The next component is the kernel. This entry can contain lots of boot parameters but the most important is the correct name of the boot kernel. So, ls the /boot partition or directory to get that name.

    • If it's in a shared /boot partition you will need to just specify the name of the kernel as if in the working directory, like so:

      /vmlinuz-2.6.18.8.tex5

    • If it's on the install partition, then it will need to list the directory on that partition in which the boot kernel is found, like so:

      /boot/vmlinuz-2.6.18.8.tex5

      • Another necessary component of the kernel line is the root partition. This is in the more tradition partitioning scheme and points to the install partition. So, in our example, it should point to hdb8 like so:

        root=/dev/hdb8 (or root=/dev/sdb8)

      • Next is the resume. If you wish to use some advanced powersaving features such as suspend to disk, then you'll want a resume parameter listed. This is your swap partition where the disk image is stored. Again, the format is the more commonly used /dev/hdxX pattern. In my case, my swap is /dev/sda6, so it should look like:

        resume=/dev/sda6

      • You may also have other kernel parameters set here, such as splash=silent, vga=788, or noapic, whatever. These are system specific and usually already in place if you just copied an original working entry as in step 1.

  5. The final necessary component is the initrd. Not all boot kernels use or require an initrd, but most larger modern systems like openSUSE, Mandriva, and PCLOS do. This usually contains filesystem modules you might need to mount the system partition or the purdy boot splashes we like so much. You can tell if you need one by issuing ls -t in /boot directory of the new system or in the shared /boot partition. -t tells it to list by time, so you can see your newest files first. If one doesn't exist in the /boot directory, or you can't find one that matches the boot kernel, then you can assume you don't need one.

    If there is one listed, then you'll need to tell Grub about it. In "Tryst's" case, he does. So:

    • First case scenario: initrd /initrd-2.6.18.8.tex5.img

    • Second case: initrd /boot/initrd-2.6.18.8.tex5.img

That's it, that should get you in. If you need to, you can temporarily edit any grub entry at boot time, usually by hitting the "e" key. You will probably have to hit "e" again when the edit the entry screen appears to edit the particular component. Then you can hit "b" to boot it. You'll need to edit the grub.conf (or menu.lst) to make it permanent.

As stated this is how I do it and there is a lot more to Grub than discussed here. But hopefully this will help one edit their grub.conf or menu.lst file to boot their new Linux partitions.

PS. Windows and Unix (bsd) use entries like so:

title windows
root (hd0,0)
makeactive
chainloader +1

StumbleUpon



I use chain loader

It's good to see the subject nailed down in plain English. I found out about the chain loader method you mention from the PCLinuxOS documents for the previous version.

First, when I install a distro, I tell the installer to write the grub menu to the first sector of the root partition (i.e. the partition to which I'm installing) instead of the master boot record. The 'buntus just will not co-operate with that, so they get short shrift. I also become hypercritical of any distro which does not give me the option of using grub.

Secondly, before even beginning the installation, I add a verse like the following to menu.lst in the distro which has grub installed on the master boot record:

title KateOS_3.2
root (hd0,2)
chainloader +1

When you select that distro from the main grub menu, you then get the separate grub menu provided by the distro itself, with different options for logging in to that distro.

Advantages to using that method:
1. You can boot into the new system from the grub menu as soon as you have finished the initial installation;
2. The installer works out all the difficult technical stuff and you reduce the scope for typing errors;
3. You enable the new distro to have several options for booting, usually simple, non-fb and fail-safe.

Disadvantages:
1. There is a double choice to make and a double time lag. You can reduce the time lag on the second menu and make the distro the default choice if you wish.

This is how I eventually fixed it! (From "the poor chap")

Hey thanks for your effort, but what you wrote, for a person like me, was tooo scary. Really, I'm one of these people who find it difficult to read too much technical stuff... and so I found it difficult (and scary) to read your help. But you did inspire me to fix my GRUB immediately, and so, I did. And this is how I did it.

Firstly, taking on from your pointer, I realised that GRUB is just code. Thanks for that pointer.

Secondly, I realised that I actually needed to "cut and paste" only. Thanks for this pointer too.

However what I did, was I went to my openSUSE GRUB menu.lst and opened the file (using su) and then I copied openSUSE's boot code, which in my case was

title openSUSE 10.2
root (hd0,3)
kernel /boot/vmlinuz root=/dev/hdc4 vga=0x317 resume=/dev/hdc3 splash=silent
initrd /boot/initrd

I pasted this to the end (replacing my previous openSUSE detailed attempt). And then tested.

Viola, it worked!

Now I know that people like me are the bane of linux. Meaning, if I knew the code, I'd understand it... but instead, more and more, a generation of windows-based users are infiltrating linux and filling the space with a desire for 'easy' solutions. I try not to be one of them, but sometimes I am. However, I guess I have to go with my strengths. I don't think I will ever be friendly about understanding code (cut and paste solutions are just about all that I can do), and so I guess I want to thank you again for taking the time to address this issue... and hopefully there will be more people who will read your entry and actually UNDERSTAND what they're doing.

Cheers!

(ps. I'm going to paste this comment onto my blog along with a link to your post, because your solution actually looks and sounds really cool!)

It used to be worse

These days, BIOSes on modern motherboards work great with GRUB (and, presumably, LILO -- but, as you noted, GRUB has the advantage of not having to be reinstalled to the MBR each time its configuration file is changed). I had one computer in the mid 90s that flat would not boot using LILO, and another computer in the late 90s that would use LILO, but flat would not boot using GRUB.

There's nothing quite like a hang at boot time to induce panic, especially when you dual-boot. (Backup? What's a backup?) So afterwards, even through a succession of new computers and new motherboards, I first used loadlin, until MS-DOS went away, and then GRUB for Windows, which uses Windows' NTLDR. Finally, one day an install of openSUSE put GRUB on the MBR (even though I told it not to) and it worked just fine, so I gave in and started using "real" GRUB.

It's also really easy these days to pop in a Knoppix CD and make a backup of the MBR (with or without the partition table) and save it on a floppy.

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.

More in Tux Machines

today's howtos

KDE/Qt: Qt Contributor Summit 2018, Integrating Cloud Solutions with Qt, FreeBSD, and Konsole

  • Qt Contributor Summit 2018
    One bit especially interesting is the graphics stack. Back in Qt 5.0, Qt took the liberty of limiting the graphics stack to OpenGL, but the world has changed since: On Windows the only proper stack is Direct3D 12, Apple introduced Metal and recently deprecated OpenGL and Vulkan is coming rather strong. It looks like embracing these systems transparently will be one of the most exciting tasks to achieve. From a KDE & Plasma perspective I don’t think this is scary, OpenGL is here to stay on Linux. We will get a Framework based on a more flexible base and we can continue pushing Plasma, Wayland, Plasma Mobile with confidence that the world won’t be crumbling. And with a bit of luck, if we want some parts to use Vulkan, we’ll have it properly abstracted already.
  • Integrating Cloud Solutions with Qt
    These days, using the cloud for predictive maintenance, analytics or feature updates is a de facto standard in the automation space. Basically, any newly designed product has some server communication at its core. However, the majority of solutions in the field were designed and productized when communication technology was not at today’s level. Still, attempts are being made to attach connectivity to such solutions. The mission statement is to “cloudify” an existing solution, which uses some internal protocol or infrastructure.
  • KDE on FreeBSD – June 2018
    It’s been a while since I wrote about KDE on FreeBSD, what with Calamares and third-party software happening as well. We’re better at keeping the IRC topic up-to-date than a lot of other sources of information (e.g. the FreeBSD quarterly reports, or the f.k.o website, which I’ll just dash off and update after writing this).
  • Konsole’s search tool
    Following my konsole’s experiments from the past week I came here to show something that I’m working on with the VDG, This is the current Konsole’s Search Bar. [...] I started to fix all of those bugs and discovered that most of them happened because we had *one* search bar that was shared between every terminal view, and whenever a terminal was activated we would reposition, reparent, repaint, disconnect, reconnect the search bar. Easiest solution: Each Terminal has it’s own search bar. Setuped only once. The one bug I did not fix was the Opening / Closing one as the searchbar is inside of a layout and layouts would reposition things anyway. All of the above bugs got squashed by just moving it to TerminalDisplay, and the code got also much cleaner as there’s no need to manual intervention in many cases. On the review Kurt – the Konsole maintainer – asked me if I could try to make the Search prettier and as an overlay on top of the Terminal so it would not reposition things when being displayed.

LibreOffice 6.0 Is Now Ready for Mainstream Users and Enterprise Deployments

LibreOffice 6.0.5 is here one and a half months after the LibreOffice 6.0.4 point release to mark the open-source office suite as ready for mainstream users and enterprise deployments. The Document Foundation considers that LibreOffice 6.0 has been tested thoroughly and that it's now ready for use in production, enterprise environments. Until now, The Document Foundation only recommended the LibreOffice 6.0 office suite to bleeding-edge users while urging enterprises and mainstream users to use the well-tested LibreOffice LibreOffice 5.4 series, which reached end of life on June 11, 2018, with the last point release, LibreOffice 5.4.7. Read more

LibreOffice 6.0 Is Now Ready for Mainstream Users and Enterprise Deployments

The Document Foundation informed Softpedia today about the general availability of the fifth point release of the LibreOffice 6.0 open-source and cross-platform office suite for all supported operating systems. LibreOffice 6.0.5 is here one and a half months after the LibreOffice 6.0.4 point release to mark the open-source office suite as ready for mainstream users and enterprise deployments. The Document Foundation considers that LibreOffice 6.0 has been tested thoroughly and that it's now ready for use in production, enterprise environments. Read more Direct: The Document Foundation announces LibreOffice 6.0.5