Language Selection

English French German Italian Portuguese Spanish

Reiser

Reiser's software work suffering after his arrest

Filed under
Reiser

Before he was arrested in connection with his wife's disappearance, Hans Reiser had gained a reputation as an innovative but controversial figure in the software development world.

Hans Reiser plea entry postponed

Filed under
Reiser

The plea entry of an Oakland man accused by authorities of killing his estranged wife has been postponed until November 28th.

Hans Reiser's Software Could Be Phased Out

Filed under
Linux
Reiser

The arrest of Hans Reiser in connection with the murder of his estranged wife is having a ripple effect on the technology world. Because Reiser is the backbone of Namesys, the software's parent company, many wonder what his arrest will mean for the software's future.

Reiser4 to go mainline?

Filed under
Linux
Reiser

Reiser4, the successor to the popular Reiserfs by Hans Reiser, has been in development for a number of years now and, for almost as long, Reiser has been pushing for inclusion of the filesystem in mainline — that is, to make it into the official kernel release. While reiserfs has been part of the kernel since 2.4.1, Reiser4 remains a feature offered only in third party kernel patchsets.

Linux: Future Of ReiserFS Development

Filed under
Reiser

With Namesys founder Hans Reiser recently arrested as the prime suspect in the disappearance of his estranged wife, a brief thread on the lkml discussed the future of ReiserFS.

SUSE 10.2 Changing from ReiserFS to Ext3?

Filed under
Reiser
SUSE

We’ve been using ReiserFS as our default installation file system for the last 6-7 years now, and it’s served us well in that time. Unfortunately, there are a number of problems with it, some purely technical, some more related to maintenance. I’ll outline a few of the larger issues and offer my solution as a conclusion.

Open-source developer's wife still missing, reward offered

Filed under
Reiser

Nina Reiser, the estranged wife of well-known open-source programmer Hans Reiser, is still missing and a $15,000 reward for information about her is now being offered by the Oakland, Calif. police department.

Mystery deepens around missing Oakland woman

Filed under
Reiser

Nine days have passed since Nina `Nenasha" Reiser was last seen dropping off her son and daughter at their father's Montclair home. Nina Reiser filed for divorce in August 2004. Hans Reiser was not at home Tuesday afternoon, and did not return messages seeking comment.

Why Reiser4 Is Not in the Kernel

Filed under
Linux
Reiser

The question of if and when Reiser4 will be merged into the mainline Linux kernel has been an on-going debate for a couple of years. Hans Reiser posted a "short term task list for Reiser4" to address the remaining technical issues.

Interview: Hans Reiser

Filed under
Reiser
Interviews
OSS

In this interview, Hans looks back at Reiser3, describing the advantages it had over other filesystems when it was released and its current state. He then explores the many improvements currently in Reiser4.

Syndicate content

More in Tux Machines

How to Contribute to the Fight Against COVID-19 With Your Linux System

Want to contribute to the research on coronavirus? You don’t necessarily have to be a scientist for this. You may contribute with part of your computer’s computing power thanks to Rosetta@home project. Read more

Raspberry Pi 4 as Desktop Computer: Is It Really Viable?

There’s little doubt that the Raspberry Pi 4 is significantly more powerful than its predecessors. Its based on the faster ARM Cortex-A72 microarchitecture and has four cores pegged at marginally-higher clock speeds. The graphics subsystem is significantly beefed up as well, running at twice the maximum stock clocks as the outgoing model. Everything about it makes it a viable desktop replacement. But is it really good enough to replace your trusty old desktop? I spent three weeks with the 8GB version of the Pi 4 to answer that million-dollar question. Read more

10 Linux Distributions and Their Targeted Users

As a free and open-source operating system, Linux has spawned several distributions over time, spreading its wings to encompass a large community of users. From desktop/home users to Enterprise environments, Linux has ensured that each category has something to be happy about. [...] Debian is renowned for being a mother to popular Linux distributions such as Deepin, Ubuntu, and Mint which have provided solid performance, stability, and unparalleled user experience. The latest stable release is Debian 10.5, an update of Debian 10 colloquially known as Debian Buster. Note that Debian 10.5 does not constitute a new version of Debian Buster and is only an update of Buster with the latest updates and added software applications. Also included are security fixes that address pre-existing security issues. If you have your Buster system, there’s no need to discard it. Simply perform a system upgrade using the APT package manager. The Debian project provides over 59,000 software packages and supports a wide range of PCs with each release encompassing a broader array of system architectures. It strives to strike a balance between cutting edge technology and stability. Debian provides 3 salient development branches: Stable, Testing, and Unstable. The stable version, as the name suggests is rock-solid, enjoys full security support but unfortunately, does not ship with the very latest software applications. Nevertheless, It is ideal for production servers owing to its stability and reliability and also makes the cut for relatively conservative desktop users who don’t really mind having the very latest software packages. Debian Stable is what you would usually install on your system. Debian Testing is a rolling release and provides the latest software versions that are yet to be accepted into the stable release. It is a development phase of the next stable Debian release. It’s usually fraught with instability issues and might easily break. Also, it doesn’t get its security patches in a timely fashion. The latest Debian Testing release is Bullseye. The unstable distro is the active development phase of Debian. It is an experimental distro and acts as a perfect platform for developers who are actively making contributions to the code until it transitions to the ‘Testing’ stage. Overall, Debian is used by millions of users owing to its package-rich repository and the stability it provides especially in production environments. Read more

LWN on Linux and Linux Foundation Bits

  • Modernizing the tasklet API

    Tasklets offer a deferred-execution method in the Linux kernel; they have been available since the 2.3 development series. They allow interrupt handlers to schedule further work to be executed as soon as possible after the handler itself. The tasklet API has its shortcomings, but it has stayed in place while other deferred-execution methods, including workqueues, have been introduced. Recently, Kees Cook posted a security-inspired patch set (also including work from Romain Perier) to improve the tasklet API. This change is uncontroversial, but it provoked a discussion that might lead to the removal of the tasklet API in the (not so distant) future. The need for tasklets and other deferred execution mechanisms comes from the way the kernel handles interrupts. An interrupt is (usually) caused by some hardware event; when it happens, the execution of the current task is suspended and the interrupt handler takes the CPU. Before the introduction of threaded interrupts, the interrupt handler had to perform the minimum necessary operations (like accessing the hardware registers to silence the interrupt) and then call an appropriate deferred-work mechanism to take care of just about everything else that needed to be done. Threaded interrupts, yet another import from the realtime preemption work, move the handler to a kernel thread that is scheduled in the usual way; this feature was merged for the 2.6.30 kernel, by which time tasklets were well established. An interrupt handler will schedule a tasklet when there is some work to be done at a later time. The kernel then runs the tasklet when possible, typically when the interrupt handler finishes, or the task returns to the user space. The tasklet callback runs in atomic context, inside a software interrupt, meaning that it cannot sleep or access user-space data, so not all work can be done in a tasklet handler. Also, the kernel only allows one instance of any given tasklet to be running at any given time; multiple different tasklet callbacks can run in parallel. Those limitations of tasklets are not present in more recent deferred work mechanisms like workqueues. But still, the current kernel contains more than a hundred users of tasklets. Cook's patch set changes the parameter type for the tasklet's callback. In current kernels, they take an unsigned long value that is specified when the tasklet is initialized. This is different from other kernel mechanisms with callbacks; the preferred way in current kernels is to use a pointer to a type-specific structure. The change Cook proposes goes in that direction by passing the tasklet context (struct tasklet_struct) to the callback. The goal behind this work is to avoid a number of problems, including a need to cast from the unsigned int to a different type (without proper type checking) in the callback. The change allows the removal of the (now) redundant data field from the tasklet structure. Finally, this change mitigates the possible buffer overflow attacks that could overwrite the callback pointer and the data field. This is likely one of the primary objectives, as the work was first posted (in 2019) on the kernel-hardening mailing list.

  • Android kernel notes from LPC 2020

    Todd Kjos started things off by introducing the Android Generic Kernel Image (GKI) effort, which is aimed at reducing Android's kernel-fragmentation problem in general. It is the next step for the Android Common Kernel, which is based on the mainline long-term support (LTS) releases with a number of patches added on top. These patches vary from Android-specific, out-of-tree features to fixes cherry-picked from mainline releases. The end result is that the Android Common Kernel diverges somewhat from the LTS releases on which it is based. From there, things get worse. Vendors pick up this kernel and apply their own changes — often significant, core-kernel changes — to create a vendor kernel. The original-equipment manufacturers begin with that kernel when creating a device based on the vendor's chips, but then add changes of their own to create the OEM kernel that is shipped with a device to the consumer. The end result of all this patching is that every device has its own kernel, meaning that there are thousands of different "Android" kernels in use. There are a lot of costs to this arrangement, Kjos said. Fragmentation makes it harder to ensure that all devices are running current kernels — or even that they get security updates. New platform releases require a new kernel, which raises the cost of upgrading an existing device to a new Android version. Fixes applied by vendors and OEMs often do not make it back into the mainline, making things worse for everybody. The Android developers would like to fix this fragmentation problem; the path toward that goal involves providing a single generic kernel in binary form (the GKI) that all devices would use. Any vendor-specific or device-specific code that is not in the mainline kernel will need to be shipped in the form of kernel modules to be loaded into the GKI. That means that Android is explicitly encouraging vendor modules, Kjos said; the result is a cleaner kernel without the sorts of core-kernel modifications that ship on many devices now. This policy has already resulted in more vendors actively working to upstream their code. That code often does not take the form that mainline developers would like to see; some of it is just patches exporting symbols. That has created some tension in the development community, he said.

  • Vibrant Networking, Edge Open Source Development On Full Display at Open Networking & Edge Summit

    The Linux Foundation, the nonprofit organization enabling mass innovation through open source, today marked significant progress in the open networking and edge spaces. In advance of the Open Networking and Edge Summit happening September 28-30, Linux Foundation umbrella projects LF Edge and LF Networking demonstrate recent achievements highlighting trends that set the stage for next-generation technology.

  • Vibrant Networking, Edge Open Source Development On Full Display at Open Networking & Edge Summit

    The Linux Foundation, the nonprofit organization enabling mass innovation through open source, today marked significant progress in the open networking and edge spaces. In advance of the Open Networking and Edge Summit happening September 28-30, Linux Foundation umbrella projects LF Edge and LF Networking demonstrate recent achievements highlighting trends that set the stage for next-generation technology. [...] “We are thrilled to announce a number of milestones across our networking and edge projects, which will be on virtual display at ONES next week,” said Arpit Joshipura, general manager, Networking, Edge and IOT, at the Linux Foundation. “Indicative of what’s coming next, our communities are laying the groundwork for markets like cloud native, 5G, and edge to explode in terms of open deployments.”