Software: Monitoring, Control Panels and Dav1d

-
Linux System Monitoring Fundamentals
There are, of course, many higher-level system monitoring programs for all distributions that permit you to monitor any Linux server. These include Glance, a Python-based cross-platform system monitoring tool; htop, another cross-platform system monitor, which uses ncurses for its display; and Netdata, a distributed server system monitoring program. However, as useful as these can be, they all rely on lower-level programs.
Four important Linux system monitoring tools are worthwhile to examine in more detail.
Sar: System Activity Reporter (sar) is part of the Sysstat system resource utilities package. Sar is a do-it-all monitoring tool. It measures CPU activity; memory/paging; interrupts; device load; network; process and thread allocation; and swap space utilization. Sar can be used interactively, but its real value is that it keeps data logs over a long period of time, which you can use to troubleshoot recurring problems and produce reports. To learn more, read our How to Use the System Activity Reporter (sar) guide.
Vmstat: This virtual memory statistics reporter is a built-in Linux command-line tool. In addition to reporting in detail on virtual memory usage, vmstat also gathers information on memory usage, memory paging, processes, I/O, CPU, and storage scheduling. Unlike sar, vmstat starts on boot. It’s used to report on cumulative activity since the last reboot. Our Use vmstat to Monitor System Performance guide includes more information about getting started with this monitoring tool.
Monitorix: Monitorix is a free, open-source tool that monitors multiple Linux services and system resources. Monitorix, from version 3.0 on, comes with its own web server. This makes it useful for remote Linux system monitoring. Originally designed for the Red Hat Enterprise Linux (RHEL) operating system family, Monitorix now works on all major Linux server distributions. Read our How to use Monitorix for System Monitoring guide to learn more.
Nethogs: This free and open-source program extends the net top tool that tracks bandwidth by process. For example, you might discern that the amount of outbound traffic has increased on your Linux server, but Nethogs helps you identify which process is generating the usage spikes. Other network monitoring utilities only break down the traffic by protocol or subnet. Read our Get Started Using Nethogs for Network Usage Monitoring guide to learn more about this tool.
-
6 Best free Cloud hosting Control Panels for Linux Servers in 2021
VPS and Cloud hosting services come with full root access where users can select the Linux operating system of their (available with the services provider) choice. However, if you are planning to host some website then installing a web hosting control on your Linux server will not only makes everything easy but provides graphical user interface, so that management of files and application becomes quite easy.
Furthermore, as a central point for the administration of the various user accounts and domains, web hosting control panels bring numerous advantages to the system administrator. Once set up, you will save a lot of time and effort in a future administration. Thanks to the simple graphical user interface of the administration program, settings can be easily made via the interface. Extensive expert knowledge and laborious work directly in the server’s operating system is no longer necessary.
[...]
Lately, I used open-source CloudPanel Cpanel on Amazon Cloud and I was really impressed because of its simple approach. Well, CloudPanel is not for those who are interesting in reselling hosting services instead meant for enterprises or individuals who want full control of their Cloud or VPS hosting server.
For example, I want to create a WordPress-based website on Cloud or VPS server using Linux but handling everything using the command line is really a cumbersome task. Thus, in such a scenario CloudPanel’s easy-to-use web interface really works.
Setting up a domain, database and installing PHP applications are super easy on it. Furthermore, out of the box it offers Nginx and multiple PHP versions to ensure fast speed and compatibility for a large range of web applications. To manage databases PhpMyAdmin is also there.
The story doesn’t end here if we are using CloudPanel on a public cloud such as Amazon web services, Google Cloud, Digital Ocean, and Microsoft Azure; we can view Instances ID and other information directly on CloudPanel Dashboard including the option to manage security policies, firewall, backup, and other common functionalities.
-
dav1d 0.8.2 Released For Speeding Up AV1 Decode On x86, ARM - Phoronix
Dav1d is already the most performant and leading AV1 software decoder we have seen while out today is v0.8.2 that should speed-up the video decode process even more on modern x86/x86_64 and ARM hardware.
While dav1d 0.8.2 is "just a point release", it does pack some interesting performance optimizations for today's hardware. On the ARM front there are ARM32 optimizations to speed up loop restoration and for other operations. ARM64 has also rewritten the wiener functions, and improved IPRED and WARP, among other work.
-
- Login or register to post comments
Printer-friendly version
- 926 reads
PDF version
More in Tux Machines
- Highlights
- Front Page
- Latest Headlines
- Archive
- Recent comments
- All-Time Popular Stories
- Hot Topics
- New Members
Programming Leftovers
| OpenSSH 8.5OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR#212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR#201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com ![]() |
Android Leftovers
| Best Free and Open Source Alternatives to Google Maps
Google has a firm grip on the desktop. Their products and services are ubiquitous. Don’t get us wrong, we’re long-standing admirers of many of Google’s products and services. They are often high quality, easy to use, and ‘free’, but there can be downsides of over-reliance on a specific company. For example, there are concerns about their privacy policies, business practices, and an almost insatiable desire to control all of our data, all of the time.
What if you are looking to move away from Google and embark on a new world of online freedom, where you are not constantly tracked, monetised and attached to Google’s ecosystem.
In this series, we explore how you can migrate from Google without missing out on anything. We’ll recommend open source solutions.
|
Recent comments
1 hour 55 min ago
2 hours 16 min ago
2 hours 28 min ago
5 hours 4 min ago
9 hours 2 min ago
10 hours 44 min ago
10 hours 49 min ago
11 hours 15 min ago
11 hours 26 min ago
11 hours 28 min ago