Language Selection

English French German Italian Portuguese Spanish

New Security Patches and New UEFI 'Secure' Boot Catastrophe

Filed under
Server
Security
  • Security updates for Thursday

    Security updates have been issued by Arch Linux (webkit2gtk), CentOS (GNOME, grub2, and kernel), Debian (firefox-esr, grub2, json-c, kdepim-runtime, libapache2-mod-auth-openidc, net-snmp, and xrdp), Gentoo (chromium and firefox), Mageia (podofo), openSUSE (knot and tomcat), Oracle (grub2, kernel, postgresql-jdbc, and python-pillow), Red Hat (firefox, grub2, kernel, and kernel-rt), SUSE (grub2), and Ubuntu (firefox, grub2, grub2-signed, and librsvg).

  • Grub2 updates for Red Hat systems are making some unbootable

    As reported in the comments on the Grub2 secure-boot vulnerabilities report, the updates for grub2 for RHEL 8 and CentOS 8 are making some systems unbootable. The boot problems are seemingly unrelated to whether the system has secure boot enabled. It may be worth waiting a bit for that to shake out.

  • Servers at risk from “BootHole” bug – what you need to know

    That’s our tongue-in-cheek name for a cybersecurity vulnerability that not only gets assigned an identifier like CVE-2020-10713, but also acquires an impressive name plus a jaunty logo (and even, in one intriguing case, a theme tune).

    This month’s bug with an impressive name (see what we did there?) is called BootHole, and its logo rather cheekily shows a boot with a worm sticking out of a hole in the toecap.

    The bad news is that this bug affects the integrity of bootup process itself, meaning that it provides a way for attackers to insert code that will run next time you restart your device, but during the insecure period after you turn on the power but before the operating system starts up.

    The good news for most of us is that it relies on a bug in a bootloader program known as GRUB, short for Grand Unified Boot Loader, which is rarely found on Windows or Mac computers.

  • Why the GRUB2 Secure Boot Flaw Doesn’t Affect Purism Computers

    To understand why this flaw does not affect Purism computers, it helps to understand why UEFI Secure Boot exists to begin with, and how it and the security exploit works. Attacks on the boot process are particularly nasty as they occur before the system’s kernel gets loaded. Attackers who have this ability can then compromise the kernel before it runs, allowing their attack to persist through reboots while also hiding from detection. UEFI Secure Boot is a technology that aims to protect against these kinds of attacks by signing boot loaders like GRUB2 with private keys controlled ultimately by Microsoft. UEFI Firmware on the computer contains the public certificate counterparts for those private keys. At boot time UEFI Secure Boot checks the signatures of the current GRUB2 executable and if they don’t match, it won’t allow the executable to run.

    If you’d like to understand the GRUB2 vulnerability in more detail, security journalist Dan Goodin has a great write-up at Ars Technica. In summary, an attacker can trigger a buffer overflow in GRUB2 as it parses the grub.cfg configuration file (this file contains settings for the GRUB2 menu including which kernels to load and what kernel options to use). This buffer overflow allows the attacker to modify GRUB2 code in memory and execute malicious code of their choice, bypassing the protection UEFI Secure Boot normally would have to prevent such an attack.

    Unfortunately, UEFI Secure Boot doesn’t extend its signature checks into configuration files like grub.cfg. This means you can change grub.cfg without triggering Secure Boot and the attack exploited that limitation to modify grub.cfg in a way that would then exploit the running GRUB2 binary after it had passed the signature check.

    Further complicating the response to this vulnerability is the fact that it’s not enough to patch GRUB2. Because the vulnerable GRUB2 binaries have already been signed by Microsoft’s certificate, an attacker could simply replace a patched GRUB2 with the previous, vulnerable version. Patching against this vulnerability means updating your UEFI firmware (typically using reflashing tools and firmware provided by your vendor) so that it can add the vulnerable GRUB2 binary signatures to its overall list of revoked signatures.

Red Hat Enterprise Linux runs into Boothole patch trouble

  • Red Hat Enterprise Linux runs into Boothole patch trouble

    Sometimes the cure really is worse than the disease. The recently revealed Boothole security problem with GRUB2 and Secure Boot can, theoretically, be used to attack Linux systems. In practice, the only vulnerable Linux systems are ones that have already been successfully breached by an attacker. Still, the potential for damage was there, so almost all enterprise Linux distributors have released patches. Unfortunately, for at least one -- Red Hat -- the fix has gone wrong.

    Many users are reporting that, after patching Red Hat Enterprise Linux (RHEL) 8.2, it has rendered their systems unbootable. The problem also appears to affect RHEL 7.x and 8.x computers as well. It seems, however, to be limited only to servers running on bare iron. RHEL virtual machines (VM)s, which don't deal with Secure Boot firmware, are working fine.

Debian explains

  • GRUB2 UEFI SecureBoot vulnerability - 'BootHole'

    UEFI Secure Boot (SB) is a verification mechanism for ensuring that code launched by a computer's UEFI firmware is trusted. It is designed to protect a system against malicious code being loaded and executed early in the boot process, before the operating system has been loaded.

    SB works using cryptographic checksums and signatures. Each program that is loaded by the firmware includes a signature and a checksum, and before allowing execution the firmware will verify that the program is trusted by validating the checksum and the signature. When SB is enabled on a system, any attempt to execute an untrusted program will not be allowed. This stops unexpected / unauthorised code from running in the UEFI environment.

    Most x86 hardware comes from the factory pre-loaded with Microsoft keys. This means the firmware on these systems will trust binaries that are signed by Microsoft. Most modern systems will ship with SB enabled - they will not run any unsigned code by default, but it is possible to change the firmware configuration to either disable SB or to enrol extra signing keys.

    Debian, like many other Linux-based operating systems, uses a program called shim to extend that trust from the firmware to the other programs that we need to be secured during early boot: the GRUB2 bootloader, the Linux kernel and firmware update tools (fwupd and fwupdate).

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.

More in Tux Machines

digiKam 7.7.0 is released

After three months of active maintenance and another bug triage, the digiKam team is proud to present version 7.7.0 of its open source digital photo manager. See below the list of most important features coming with this release. Read more

Dilution and Misuse of the "Linux" Brand

Samsung, Red Hat to Work on Linux Drivers for Future Tech

The metaverse is expected to uproot system design as we know it, and Samsung is one of many hardware vendors re-imagining data center infrastructure in preparation for a parallel 3D world. Samsung is working on new memory technologies that provide faster bandwidth inside hardware for data to travel between CPUs, storage and other computing resources. The company also announced it was partnering with Red Hat to ensure these technologies have Linux compatibility. Read more

today's howtos

  • How to install go1.19beta on Ubuntu 22.04 – NextGenTips

    In this tutorial, we are going to explore how to install go on Ubuntu 22.04 Golang is an open-source programming language that is easy to learn and use. It is built-in concurrency and has a robust standard library. It is reliable, builds fast, and efficient software that scales fast. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel-type systems enable flexible and modular program constructions. Go compiles quickly to machine code and has the convenience of garbage collection and the power of run-time reflection. In this guide, we are going to learn how to install golang 1.19beta on Ubuntu 22.04. Go 1.19beta1 is not yet released. There is so much work in progress with all the documentation.

  • molecule test: failed to connect to bus in systemd container - openQA bites

    Ansible Molecule is a project to help you test your ansible roles. I’m using molecule for automatically testing the ansible roles of geekoops.

  • How To Install MongoDB on AlmaLinux 9 - idroot

    In this tutorial, we will show you how to install MongoDB on AlmaLinux 9. For those of you who didn’t know, MongoDB is a high-performance, highly scalable document-oriented NoSQL database. Unlike in SQL databases where data is stored in rows and columns inside tables, in MongoDB, data is structured in JSON-like format inside records which are referred to as documents. The open-source attribute of MongoDB as a database software makes it an ideal candidate for almost any database-related project. This article assumes you have at least basic knowledge of Linux, know how to use the shell, and most importantly, you host your site on your own VPS. The installation is quite simple and assumes you are running in the root account, if not you may need to add ‘sudo‘ to the commands to get root privileges. I will show you the step-by-step installation of the MongoDB NoSQL database on AlmaLinux 9. You can follow the same instructions for CentOS and Rocky Linux.

  • An introduction (and how-to) to Plugin Loader for the Steam Deck. - Invidious
  • Self-host a Ghost Blog With Traefik

    Ghost is a very popular open-source content management system. Started as an alternative to WordPress and it went on to become an alternative to Substack by focusing on membership and newsletter. The creators of Ghost offer managed Pro hosting but it may not fit everyone's budget. Alternatively, you can self-host it on your own cloud servers. On Linux handbook, we already have a guide on deploying Ghost with Docker in a reverse proxy setup. Instead of Ngnix reverse proxy, you can also use another software called Traefik with Docker. It is a popular open-source cloud-native application proxy, API Gateway, Edge-router, and more. I use Traefik to secure my websites using an SSL certificate obtained from Let's Encrypt. Once deployed, Traefik can automatically manage your certificates and their renewals. In this tutorial, I'll share the necessary steps for deploying a Ghost blog with Docker and Traefik.