Language Selection

English French German Italian Portuguese Spanish

Security Leftovers

Filed under
Security
  • Hidden For 6 Years, ‘Slingshot’ Malware Hacks Your PC Through Your Router
  • Security updates for Tuesday
  • Microsoft Admits It Incorrectly Upgraded Some Windows 10 Users to v1709 [Ed: Windows Update is technically (not a joke) a botnet. It takes over people's PCs and hands them over for Microsoft to use up their CPU and bandwidth. Microsoft has ignored users' "update" settings since at least Windows XP days.]

    Microsoft admitted last week that it incorrectly updated some Windows 10 users to the latest version of the Windows 10 operating system —version 1709— despite users having specifically paused update operations in their OS settings.

    The admission came in a knowledge base article updated last week. Not all users of older Windows versions were forcibly updated, but only those of Windows 10 v1703 (Creators Update).

    This is the version where Microsoft added special controls to the Windows Update setting section that allow users to pause OS updates in case they have driver or other hardware issues with the latest OS version.

  • We Still Need More HTTPS: Government Middleboxes Caught Injecting Spyware, Ads, and Cryptocurrency Miners

    Last week, researchers at Citizen Lab discovered that Sandvine's PacketLogic devices were being used to hijack users' unencrypted internet connections, making yet another case for encrypting the web with HTTPS. In Turkey and Syria, users who were trying to download legitimate applications were instead served malicious software intending to spy on them. In Egypt, these devices injected money-making content into users' web traffic, including advertisements and cryptocurrency mining scripts.

    These are all standard machine-in-the-middle attacks, where a computer on the path between your browser and a legitimate web server is able to intercept and modify your traffic data. This can happen if your web connections use HTTP, since data sent over HTTP is unencrypted and can be modified or read by anyone on the network.

    The Sandvine middleboxes were doing exactly this. On Türk Telekom’s network, it was reported that when a user attempted to download legitimate applications over HTTP, these devices injected fake "redirect" messages which caused the user’s browser to fetch the file from a different, malicious, site. Users downloading common applications like Avast Antivirus, 7-Zip, Opera, CCleaner, and programs from download.cnet.com had their downloads silently redirected. Telecom Egypt’s Sandvine devices, Citizen Lab noted, were using similar methods to inject money-making content into HTTP connections, by redirecting existing ad links to affiliate advertisements and legitimate javascript files to cryptocurrency mining scripts.

  • Let’s Encrypt takes free “wildcard” certificates live
  • GuardiCore Upgrades Infection Monkey Open Source Cyber Security Testing Tool
  • A Guide To Securing Docker and Kubernetes Containers With a Firewall
  • How IBM Helps Organizations to Improve Security with Incident Response

    Protecting organizations against cyber-security threats isn't just about prevention, it's also about incident response. There are many different organizations that provide these security capabilities, including IBM X-Force Incident Response and Intelligence Services (IRIS), which is led by Wendi Whitmore.

    In the attached video interview Whitmore explains how incident response works and how she helps organizations to define a winning strategy. Succeeding at incident response in Whitmore's view, shouldn't be focused just on prevention but on building a resilient environment.

More in Tux Machines

The Last Independent Mobile OS

The year was 2010 and the future of mobile computing was looking bright. The iPhone was barely three years old, Google’s Android had yet to swallow the smartphone market whole, and half a dozen alternative mobile operating systems—many of which were devoutly open source—were preparing for launch. Eight years on, you probably haven’t even heard of most of these alternative mobile operating systems, much less use them. Today, Android and iOS dominate the global smartphone market and account for 99.9 percent of mobile operating systems. Even Microsoft and Blackberry, longtime players in the mobile space with massive revenue streams, have all but left the space. Then there’s Jolla, the small Finnish tech company behind Sailfish OS, which it bills as the “last independent alternative mobile operating system.” Jolla has had to walk itself back from the edge of destruction several times over the course of its seven year existence, and each time it has emerged battered, but more determined than ever to carve out a spot in the world for a truly independent, open source mobile operating system. After years of failed product launches, lackluster user growth, and supply chain fiascoes, it’s only been in the last few months that things finally seem to be turning to Jolla’s favor. Over the past two years the company has rode the wave of anti-Google sentiment outside the US and inked deals with large foreign companies that want to turn Sailfish into a household name. Despite the recent success, Jolla is far from being a major player in the mobile market. And yet it also still exists, which is more than can be said of every other would-be alternative mobile OS company. Read more

How I Quit Apple, Microsoft, Google, Facebook, and Amazon

It was just before closing time at a Verizon store in Bushwick, New York last May when I burst through the door, sweaty and exasperated. I had just sprinted—okay I walked, but briskly—from another Verizon outlet a few blocks away in the hopes I’d make it before they closed shop for the night. I was looking for a SIM card that would fit a refurbished 2012 Samsung Galaxy S3 that I had recently purchased on eBay, but the previous three Verizon stores I visited didn’t have any chips that would fit such an old model. When I explained my predicament to the salesperson, he laughed in my face. “You want to switch from you current phone to an... S3?” he asked incredulously. I explained my situation. I was about to embark on a month without intentionally using any services or products produced by the so-called “Big Five” tech companies: Amazon, Apple, Facebook, Google, and Microsoft. At that point I had found adequate, open source replacements for most of the services offered by these companies, but ditching the Android OS, which is developed by Google, was proving difficult. Most of the tech I use on a day-to-day basis is pretty utilitarian. At the time I was using a cheap ASUS laptop at work and a homebrew PC at my apartment. My phone was a Verizon-specific version of the Samsung Galaxy J3, a 2016 model that cost a little over $100 new. They weren't fancy, but they’ve reliably met most of my needs for years. For the past week and a half I had spent most of my evenings trying to port an independent mobile OS called Sailfish onto my phone without any luck. As it turned out, Verizon had locked the bootloader on my phone model, which is so obscure that no one in the vibrant Android hacking community had dedicated much time to figuring out a workaround. If I wanted to use Sailfish, I was going to have to get a different phone. Read more

RISC-V Will Stop Hackers Dead From Getting Into Your Computer

The greatest hardware hacks of all time were simply the result of finding software keys in memory. The AACS encryption debacle — the 09 F9 key that allowed us to decrypt HD DVDs — was the result of encryption keys just sitting in main memory, where it could be read by any other program. DeCSS, the hack that gave us all access to DVDs was again the result of encryption keys sitting out in the open. Because encryption doesn’t work if your keys are just sitting out in the open, system designers have come up with ingenious solutions to prevent evil hackers form accessing these keys. One of the best solutions is the hardware enclave, a tiny bit of silicon that protects keys and other bits of information. Apple has an entire line of chips, Intel has hardware extensions, and all of these are black box solutions. They do work, but we have no idea if there are any vulnerabilities. If you can’t study it, it’s just an article of faith that these hardware enclaves will keep working. Now, there might be another option. RISC-V researchers are busy creating an Open Source hardware enclave. This is an Open Source project to build secure hardware enclaves to store cryptographic keys and other secret information, and they’re doing it in a way that can be accessed and studied. Trust but verify, yes, and that’s why this is the most innovative hardware development in the last decade. Read more

ONAP Myths Debunked

The Linux Foundation’s Open Network Automation Platform (ONAP) is well into its third 6-month release (Casablanca came out in Dec ’18), and while the project has evolved since it’s first release, there is still some confusion about what it is and how it’s architected. This blogs takes a closer look at ONAP, under-the-hood, to clarify how it works. To start, it is important to consider what functionality ONAP includes. I call ONAP a MANO++, where ONAP includes the NFVO and VNFM layers as described by ETSI, but goes beyond by including service assurance/automation and a unified design tool. ONAP does not include the NFVI/VIM or the NFV cloud layer. In other words, ONAP doesn’t really care whether the NFV cloud is OpenStack, Kubernetes or Microsoft Azure. Nor does ONAP include VNFs. VNFs come from third-party companies or open source projects but have VNF guidelines and onboarding SDKs that ease the deployment. In other words, ONAP is a modular platform for complete Network Automation. Read more